Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
2.
Transfusion ; 62(9): 1779-1790, 2022 09.
Article in English | MEDLINE | ID: covidwho-1968204

ABSTRACT

BACKGROUND: Plateletpheresis involves platelet separation and collection from whole blood while other blood cells are returned to the donor. Because platelets are replaced faster than red blood cells, as many as 24 donations can be done annually. However, some frequent apheresis platelet donors (>20 donations annually) display severe plateletpheresis-associated lymphopenia; in particular, CD4+ T but not B cell numbers are decreased. COVID-19 vaccination thereby provides a model to assess whether lymphopenic platelet donors present compromised humoral immune responses. STUDY DESIGN AND METHODS: We assessed vaccine responses following 2 doses of COVID-19 vaccination in a cohort of 43 plateletpheresis donors with a range of pre-vaccination CD4+ T cell counts (76-1537 cells/µl). In addition to baseline T cell measurements, antibody binding assays to full-length Spike and the Receptor Binding Domain (RBD) were performed pre- and post-vaccination. Furthermore, pseudo-particle neutralization and antibody-dependent cellular cytotoxicity assays were conducted to measure antibody functionality. RESULTS: Participants were stratified into two groups: <400 CD4/µl (n = 27) and ≥ 400 CD4/µl (n = 16). Following the first dose, 79% seroconverted within the <400 CD4/µl group compared to 87% in the ≥400 CD4/µl group; all donors were seropositive post-second dose with significant increases in antibody levels. Importantly differences in CD4+ T cell levels minimally impacted neutralization, Spike recognition, and IgG Fc-mediated effector functions. DISCUSSION: Overall, our results indicate that lymphopenic plateletpheresis donors do not exhibit significant immune dysfunction; they have retained the T and B cell functionality necessary for potent antibody responses after vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Lymphopenia , Blood Donors , COVID-19/prevention & control , COVID-19/therapy , COVID-19 Vaccines/adverse effects , Humans , Lymphopenia/etiology , Platelet Count , Plateletpheresis/methods
4.
Transfusion ; 62(1): 173-182, 2022 01.
Article in English | MEDLINE | ID: covidwho-1511392

ABSTRACT

BACKGROUND: The COVID19 pandemic highlights the need for contingency planning in the event of blood shortages. To increase platelet supply, we assessed the operational impact and effect on platelet quality of splitting units prior to storage. STUDY DESIGN AND METHODS: Using production figures, we modeled the impact on unit numbers, platelet counts, and volumes of splitting only apheresis double donations into three units (yielding ⅔ doses), or all standard dose units in half. To assess quality, eight pools of three ABO/Rh-matched apheresis (Trima Accel) double donations in plasma were split to ⅔ and ½ volumes in both Terumo and Fresenius storage bags. These were irradiated and subject to maximal permitted periods of nonagitation (3 × 8 h) before comparing platelet quality markers (including pH, CD62P expression) to Day 9 of storage. RESULTS: Splitting all double donations into three predicted inventory expansion of 23% overall whereas halving all standard dose units clearly doubles stock. In our study, ⅔ and ½ doses contained 153 ± 15 × 109 (~138 ml) and 113 ± 11 × 109 (~102 ml) platelets respectively. Following storage, higher pH was observed in ⅔ than in ½ doses and in Terumo compared to Fresenius bags. The higher pH was reflected in better quality markers, including lower CD62P expression. Despite the differences, on Day 8 (of pH monitoring at expiry) all ⅔ doses and most ½ doses were ≥pH 6.4. CONCLUSION: A strategy to split apheresis platelets in plasma to lower doses is feasible, maintains acceptable platelet quality, and should be considered by blood services in response to extreme shortages.


Subject(s)
Blood Platelets , COVID-19 , Blood Platelets/metabolism , Blood Preservation , Humans , Platelet Count , Plateletpheresis
5.
J Clin Apher ; 36(6): 882-885, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1441998

ABSTRACT

The risk of a hemolytic reaction during the transfusion of ABO non-identical PC is determined by the presence of natural anti-A IgM antibodies, the titer of which may increase after infections. The aim of the study was to evaluate the titer of anti-A isohemagglutinins in platelet concentrate (PC) obtained by apheresis from group O donors who experienced SARS-CoV-2 infection, and to compare the titer before and after infection. A retrospective single-center analysis of 21 PC donors with a previous COVID-19 history was performed. The results showed neither a statistically important increase in the anti-A IgM antibody titers nor a significant correlation between the anti-A IgM antibody level and anti-SARS-CoV-2S1 antibody titer in the donors with an asymptomatic or mild COVID-19. Further population-based studies on anti-A titers are necessary for a comprehensive assessment of this phenomenon.


Subject(s)
COVID-19/blood , COVID-19/immunology , Hemagglutinins/blood , Plateletpheresis , SARS-CoV-2 , ABO Blood-Group System/immunology , Adult , Antibodies, Viral/blood , Blood Donors , Cohort Studies , Female , Humans , Immunoglobulin M/blood , Male , Middle Aged , Platelet Transfusion/adverse effects , Retrospective Studies , SARS-CoV-2/immunology , Transfusion Reaction/blood , Transfusion Reaction/etiology , Transfusion Reaction/immunology , Young Adult
7.
Transfus Apher Sci ; 59(5): 102868, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-622336

ABSTRACT

The novel coronavirus disease (COVID-19) has been declared a pandemic by the world health organization and to limit the spread of the disease, many countries in the world, including India, had enforced a lockdown. Despite no restriction over the platelet donation activities, plateletpheresis donors became apprehensive regarding the possible risk of spread of the COVID-19 during the platelet donation and in the hospital premises. Many of them started hesitating for platelet donations. With this, the blood center started having an acute shortage of platelets. Various confidence-building steps were implemented by the blood center to promote voluntary plateletpheresis. The blood center staff and individual donors were educated to prevent the spread of COVID-19. The donor organizations and plateletpheresis donors were informed about the steps to be taken by the blood center during the donation and necessary steps for the prevention of the possible spread of COVID-19. With the help of these measures, the confidence of the individual platelet donors and the donor organizations was restored in the blood center and regular plateletpheresis was continued. These measures may also be useful to other blood centers in the COVID-19 pandemic and this experience may be useful if a similar pandemic lockdown happens in the future.


Subject(s)
Blood Platelets/pathology , COVID-19/blood , COVID-19/epidemiology , Medical Oncology , Pandemics/prevention & control , Tertiary Care Centers , Air Conditioning , Blood Donors , COVID-19/prevention & control , Databases as Topic , Food , Health Personnel , Humans , India/epidemiology , Motivation , Physical Distancing , Plateletpheresis , SARS-CoV-2/physiology , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL